

ecology and environment, inc.

CLOVERLEAF BUILDING 3, 6405 METCALF, OVERLAND PARK, KANSAS 66202, TEL. 913/432-9961

International Specialists in the Environment

MEMORANDUM

Site: KUNCMAND ECASTING
ID #KSDD063350/3
Break: 2. 0
Other: 41693

TO:

N Roy Crossland, Acting EPA/DPO

FROM:

Hieu Q. Vu, E & E/ATATL

THRU:

Joe Chandler, E & E/TATL

DATE:

April 16, 1993

SUBJECT:

Removal Funded: Kuhlman Diecasting Co., Stanley, Kansas

Removal Assessment Phase II

TDD: T07-9301-025 PAN: EKS0331FCA EPA/OSC: Tim Curry

40262040

I. INTRODUCTION

The Ecology and Environment, Inc., Technical Assistance Team (TAT) was tasked by the U.S. Environmental Protection Agency (EPA) Region VII Emergency Planning and Response (EP&R) Branch, under TDD T07-9301-025, to conduct Phase II of the removal assessment at the Kuhlman Diecasting Company, Stanley, Kansas.

The primary objective for the Phase II Removal Assessment was to determine whether further removal activity is required at the site. This included collection of surface soil samples from within the property, utilizing the 95% upper confidence limit (UCL) sampling protocol.

TAT member Hieu Vu was the project manager for the site.

II. BACKGROUND

A. Site Location/Description

Kuhlman Diecasting Company (KDC) is located at 164th Street and Mission Road, near Stanley, Kansas. The 39-acre site is on a floodplain, 2 miles east and 1.5 miles south of Stanley in Johnson County, in a meander of the Blue River. The defunct electroplating facility consists of a 130,000-square-

HV/LD

EKS0331FCA/9301025/F

foot, single-story, concrete-block building and an assortment of waste treatment lagoons, storage ponds and tanks. KDC began electroplating operations at the site in 1964, after the property had previously been used by an oil refiner.

Land use within a 3-mile radius of the site includes residential, recreational, and agricultural. The nearest residences are approximately 1,000 feet northeast of the site; the Blue River is approximately 50 feet west of the site. It is believed that nearby residents are using a public water supply for drinking; however, information regarding the use of private wells (if any exist) for irrigation or other purposes was not readily available.

B. Site History/Previous Investigations and Actions

KDC occupied the Stanley, Kansas facility from 1964 to 1990. Prior to 1964, the property had changed ownership several times for various productions, including an oil refinery in early 1900s (see Removal Funded: Kuhlman Diecasting Co., Stanley, Kansas - Final Report For Phase I Removal Action, TDD: T07-9210-031, for complete title search of the site). KDC had engaged in manufacturing of zinc diecastings for a variety of commercial and industrial customers, including automotive, small appliances, and telecommunications. The KDC operation also included buffing and polishing of aluminum diecastings. KDC had employed an electroplating process that utilized chromium, nickel, and copper platings on the zinc diecasting.

In 1972, the Kansas Department of Health and Environment (KDHE) ordered the facility's owner to upgrade wastewater treatment facilities. A National Pollutant Discharge Elimination System (NPDES) permit was issued for a new wastewater treatment system in 1973. In 1976, KDHE again ordered the facility's owner to upgrade the wastewater treatment system. KDHE continued with compliance inspections of the treatment plant through the 1980s.

In 1982, KDHE determined during a Resource Conservation and Recovery Act (RCRA) compliance inspection that hazardous wastes were being improperly stored at the site. Another RCRA inspection in 1986 led to documentation of illegal disposal of paint wastes and solvents at the site. EPA imposed a RCRA Administrative Penalty on the owners for those violations.

In November 1990, KDC, with its owner citing an ongoing economic recession as a cause, filed Chapter 11 bankruptcy. Subsequently, Congress Financial Corporation, Chicago, Illinois, a secured creditor with first mortgage rights on the facility initiated an auction of the property's equipment and some inventory, which occurred in March, 1991.

On March 24, 1991, EPA sent a notice letter to David E. Kuhlman, company president, under Section 107a of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), notifying him of potential financial liabilities associated with cleanup costs of the site. Kuhlman did not respond.

On April 16, 1991, individuals who had purchased inventory and equipment at the site ignited an unknown substance with sparks from a cutting torch, while cutting up a tank purchased for salvage. The local HazMat team and fire department, KDHE, and the John County Department of Environmental Control (JCDEC) responded to the fire. TAT, under EP&R's direction, also responded to the incident.

TAT provided technical assistance to the local HazMat team and fire department during the extinguishment of the fire. A followup inspection of the site was conducted by EPA and TAT personnel on April 23, 1991. The inspection revealed hundreds of drums, containers and vats containing incompatible electroplating wastes that were stored inside the facility's building (e.g., drums containing acids were stored adjacent to drums containing cyanide). Samples of liquid and sludge collected from some of the drums and from the floor at the plating area indicted cyanide and metals present at percentage levels. A complete removal assessment was conducted by TAT in June, 1991.

C. Phase I Removal Action Synopsis

On July 15, 1991, an Action Memorandum, with a \$1.51-million ceiling, was signed for removal and stabilization of the site. Phase I removal activities began on July 22, 1991, and concluded on June 1, 1992. During that period, over 1 million gallons of water contaminated with metals and cyanide, including nearly 900,000 gallons that exceeded allowable discharge levels before treatment were treated on site. This included bulking and treating contents of approximately 960 drums and containers. Wastes exhibiting high metal concentrations or which, for other reasons, could not be treated on site, were transported off site for recycling and/or disposal facilities. All special waste [e.g., trash, debris, expended personal protective equipment (PPE), dust from HVAC system, etc.] was sent under a special permit to the Johnson County landfill. Once all wastes were removed from the site, the building was steam cleaned and the wash water treated. A complete report detailing removal activities was submitted to EPA on January 19, 1993 (Removal Funded: Kuhlman Diecasting Co., Stanley, Kansas - Final Report For Phase I Removal Action, TDD: T07-9210-031).

Following the completion of the phase I removal action, TAT conducted a phase II removal assessment of the site in June and July;, 1992, under TDD: T07-9107-035D, to assist EPA in determining whether further removal activity would be required at the site. During this assessment, the 39-acre property was subdivided into eight strata for different sampling strategies (see Figure 1), and multimedia samples were collected, including concrete dust inside the building, sediment in lagoons, subsurface and surface soil, and ground water samples. A complete report detailing site activities and samples results was submitted to EPA on September 24, 1992 (Removal Funded: Kuhlman Diecasting Co., Stanley, Kansas - Phase II Removal Assessment, TDD: T07-9107-035D). During the Phase II removal assessment, TAT also utilized a site-specific model of the X-ray fluorescence (XRF) spectrophotometer to screen surface soil samples for chromium, copper, and nickel. Both XRF and laboratory confirmatory data indicated concentrations of metals above background in some areas within Area #7 and #3 (see Figure 1). Therefore, this sampling effort was to delineate the extent of the contamination of those areas.

III. ON-SITE ACTIVITIES

March 15, 1993: The areas of concern within Area #7 and #3 were grided into 10 sections of approximately 5,000 square feet each (see Figure 1: Site Sketch of Sampling Strata), as described in the QAPjP (attached). Three replicate samples were collected from each section, in accordance with the 95% upper confidence limit (UCL) sampling protocol. Each sample was collected utilizing a new pie pan, spoon, and gloves to prevent cross-contamination. After the sample was homogenized in the pie pan, it was transferred into one 8 ounce glass jar. Sample management was performed in accordance with the

QAPjP. Thirty three replicate samples were collected (BGXGK001 - 030), including 3 duplicates (BGXGK025D, 026D, and 027D0. The samples were submitted to the Region VII EPA Laboratory on March 16, 1993, for total chromium, copper, nickel, and zinc analyses.

VI. RESULTS

Analytical results were received by the TAT on April 12, 1993 (attached). A summary of sample results including calculated 95% UCL concentrations for each analyte is attached to this report. Of the four metals analyzed, only nickel and zinc were found exceeded their respective established action levels in 6 of the 10 sampled sections. Zinc was found exceeded its action level in five sections, 2 to 6, while nickel was found exceeded its action level in 2 sections, 1 and 3. These sections are adjacent to the building to the north and west. It is noted that soil samples collected from areas east and south of the building (gravel parking lot) during past activities at the site indicated metals' concentrations below the action limits. The remaining 4 sections (Section 7 to 10) were below the action levels. It is noted that soil background samples collected during past activities at the site exhibited similar metals' concentrations as those in Section 7 to 10.

Because 6 sections showed metals' concentrations above action levels, TAT's future involvement with the site may include further sampling to delineate the extent of the contamination to the north and west of the production facility.

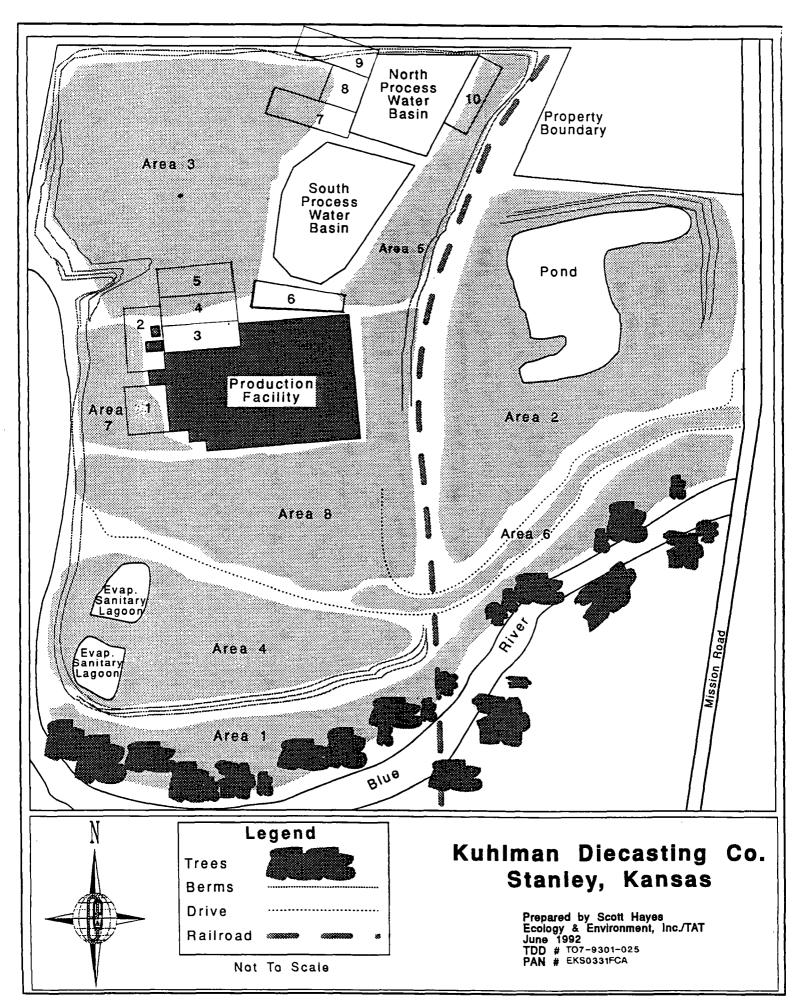

ATTACHMENTS

Figure 1: Site Sketch of Sampling Strata

Quality Assurance Project Plan For Kuhlman Diecasting Site Removal Action, Stanley, Kansas, December 30, 1992.

Summary of 95% UCL Soil Sampling, Kuhlman Diecasting Co.

Analytical Results and Field Sheets and Chain-of-Custody

PAGE NO. 1 04/14/93

SUMMARY OF 95% UCL SOIL SAMPLING
KUHLMAN DIECASTING CO. SITE - PHASE II, STANLEY, KANSAS
TDD#: T07-9301-025
PAN#: EKS0331FCA

SAMPLE NUMBER (BGXGK)	CONCENTRATION (MG/KG)	CONCENTRATION		ACTION LEVEL (MG/KG)	COMMENT			
*****	******	-	****	*****	****	*****		
** ANALYTE 001 002 003	ICAL PARAMETER: 1040.0 568.0 874.0	Cr	1231	2000	SECT SECT SECT			
** ANALYTI 001 002 003	ICAL PARAMETER: 813.0 586.0 775.0	Cu	930	10000	SECT SECT SECT			
** ANALYTI 001 002 003	ICAL PARAMETER: 3310.0 2970.0 2830.0	Ní	3453	1500	SECT SECT SECT			
** ANALYTI 001 002 003	ICAL PARAMETER: 4270.0 4520.0 4780.0	: Zn	4953	5500	SECT SECT SECT			
** ANALYTI 001 002 003	ICAL PARAMETER: 176.0 146.0 187.0	Cr	205	2000	SECT SECT SECT	2 - NORTH 2 - SOUTH 2 - EAST		
** ANALYTI 001 002 003	ICAL PARAMETER: 1930.0 340.0 379.0	Cu	2412	10000	SECT SECT SECT	2 - NORTH 2 - SOUTH 2 - EAST		
** ANALYTI 001 002 003	ICAL PARAMETER: 670.0 741.0 610.0	Ní	784	1500	SECT SECT SECT	2 - SOUTH		
** ANALYTI 001 002 003	ICAL PARAMETER: 1240.0 11600.0 1340.0	Zn	14762	5500	SECT SECT SECT			
** ANALYT 001 002 003	ICAL PARAMETER: 180.0 267.0 243.0	Cr	306	2000	SECT SECT SECT	3 - NORTH 3 - SOUTH 3 - EAST		

2 PAGE NO. 04/14/93

SUMMARY OF 95% UCL SOIL SAMPLING
KUHLMAN DIECASTING CO. SITE - PHASE II, STANLEY, KANSAS
TDD#: T07-9301-025

PAN#: EKS0331FCA

SAMPLE NUMBER (BGXGK)	CONCENTRATION (MG/KG)	CONCENTRATION		ACTION LEVEL (MG/KG)	COMMENT		
*****	*****	_	*****	*****	****	*****	
** ANALYTI 001 002 003	CAL PARAMETER: 485.0 1060.0 728.0	Cu	1244	10000		3 - NORTH 3 - SOUTH 3 - EAST	
** ANALYTI 001 002 003	CAL PARAMETER: 986.0 1130.0 2150.0	Ni	2492	1500	SECT SECT SECT	3 - NORTH 3 - SOUTH 3 - EAST	
** ANALYTI 001 002 003	CAL PARAMETER: 35700.0 4310.0 5030.0	2n	45222	5500	SECT	3 - NORTH 3 - SOUTH 3 - EAST	
** ANALYTI 001 002 003	CAL PARAMETER: 302.0 319.0 241.0	Cr	356	2000	SECT SECT SECT	4 - NORTH 4 - SOUTH 4 - EAST	
** ANALYTI 001 002 003	CAL PARAMETER: 776.0 689.0 421.0	Cu	941	10000		4 - NORTH 4 - SOUTH 4 - EAST	
** ANALYTI 001 002 003	CAL PARAMETER: 786.0 814.0 682.0	N1	878	1500	SECT SECT SECT	4 - NORTH 4 - SOUTH 4 - EAST	
** ANALYTI 001 002 003	CAL PARAMETER: 9470.0 16800.0 10400.0	Zn	18951	5500	SECT SECT SECT	4 - NORTH 4 - SOUTH 4 - EAST	
** ANALYTI 001 002 003	CAL PARAMETER: 100.0 119.0 101.0	Cr	125	2000	SECT SECT SECT	5 - NORTH 5 - SOUTH 5 - EAST	
** ANALYTI 001 002 003	CAL PARAMETER: 427.0 565.0 452.0	Cu	605	10000		5 - NORTH 5 - SOUTH 5 - EAST	

PAGE NO. 04/14/93

3

SUMMARY OF 95% UCL SOIL SAMPLING

KUHLMAN DIECASTING CO. SITE - PHASE II, STANLEY, KANSAS

TDD#: T07-9301-025 PAN#: EKS0331FCA

SAMPLE CON NUMBER (BGXGK)	CENTRATION (MG/KG)	CONCENTRATION		ACTION LEVEL (MG/KG)	COMMENT			
· · · · · · · · · · · · · · · · · · ·	******		*****	(MG/NG)	****	*******		
** ANAT VIII CAT	TO A TO A SATTORNEY .	214						
** ANALYTICAL		NI	0.04	4500	aram.	C MODBU		
001	391.0		801	1500	SECT	5 - NORTH		
002	708.0				SECT	5 - SOUTH		
003	466.0				SECT	5 - EAST		
** ANALYTICAL		Zn	06225	5500	OF OF	E NODEKI		
001	6640.0		26775	5500	SECT			
002	22000.0				SECT	5 - SOUTH		
003	6240.0				SECT	5 - EAST		
** ANALYTICAL	. PARAMETER:	Cr						
001	77.5		144	2000	SECT	6 - NORTH		
002	88.6				SECT	6 - SOUTH		
003	129.0				SECT	6 - EAST		
** ANALYTICAL	PARAMETER:	Cu						
001	150.0		191	10000	SECT	6 - NORTH		
002	135.0				SECT	6 - SOUTH		
003	178.0				SECT	6 - EAST		
** ANALYTICAL	. PARAMETER:	Ni						
001	413.0		830	1500	SECT	6 - NORTH		
002	279.0				SECT	6 - SOUTH		
003	703.0				SECT	6 - EAST		
** ANALYTICAL		Zn						
001	9690.0		25130	5500	SECT	6 - NORTH		
002	10700.0				SECT	6 - SOUTH		
003	21600.0				SECT	6 - EAST		
** ANALYTICAL		Cr						
001	113.0		158	2000	SECT	7 - NORTH		
002	137.0				SECT	7 - SOUTH		
003	143.0				SECT	7 - EAST		
** ANALYTICAL		Cu						
001	124.0		144	10000	SECT	7 - NORTH		
002	136.0				SECT	7 - SOUTH		
003	136.0				SECT	7 - EAST		
** ANALYTICAL		Ni						
001	22.0		23	1500	SECT	7 - NORTH		
002	22.9				SECT	7 - SOUTH		
003	21.5				SECT	7 - EAST		

PAGE NO. 4 04/14/93

SUMMARY OF 95% UCL SOIL SAMPLING KUHLMAN DIECASTING CO. SITE - PHASE II, STANLEY, KANSAS

TDD#: T07-9301-025 PAN#: EKS0331FCA

SAMPLE CON NUMBER (BGXGK)	CENTRATION (MG/KG)	95% UG CONCENTRA (MG/KG	ATION	ACTION LEVEL (MG/KG)	COMME	NT
	*****	(MG/ NG	- •	(MG/NG)	****	******
** ANALYTICAL		Zn				
001	317.0		377	5500		7 - NORTH
002	362.0					7 - SOUTH
003	312.0				SECT	7 - EAST
** ANALYTICAL		Cr				
001	162.0		356	2000		8 - NORTH
002	302.0					8 - SOUTH
003	247.0				SECT	8 - EAST
** ANALYTICAL		Cu				
001	147.0		358	10000		8 - NORTH
002	302.0					8 - SOUTH
003	233.0				SECT	8 - EAST
** ANALYTICAL		Ni				
001	12.0		20	1500		8 - NORTH
002	16.6					8 - SOUTH
003	16.6				SECT	8 - EAST
** ANALYTICAL		Zn				
001	167.0		268	5500		8 - NORTH
002	230.0					8 - SOUTH
003	227.0				SECT	8 - EAST
** ANALYTICAL		Cr				
001	263.0		425	2000	SECT	
001D	294.0				SECT	9 - NORTH
002	382.0				SECT	9 - SOUTH
002D	422.0				SECT	9 - SOUTH
003	403.0				SECT	9 - EAST
003D	434.0				SECT	9 - EAST
** ANALYTICAL	PARAMETER:	Cu				
001	587.0		845	10000	SECT	9 - NORTH
001D	629.0				SECT	9 - NORTH
002	713.0					9 - SOUTH
002D	828.0					9 - SOUTH
003	764.0					9 - EAST
003D	926.0				SECT	9 - EAST
** ANALYTICAL		Ni				
001	23.8		29	1500		9 - NORTH
001D	24.8					9 - NORTH
002	25.0				SECT	9 - SOUTH

PAGE NO. 5 04/14/93

SUMMARY OF 95% UCL SOIL SAMPLING KUHLMAN DIECASTING CO. SITE - PHASE II, STANLEY, KANSAS TDD#: T07-9301-025

PAN#: EKS0331FCA

SAMPLE CO NUMBER (BGXGK)	ONCENTRATION (MG/KG)	95% U CONCENTR (MG/K	ATION	ACTION LEVEL (MG/KG)	COMMI	ENT		
*****	******	*****	****	*****	****	***	*****	***
0000	0.5				anam	_	2017	
002D	25.4				SECT		- SOUTH	
003	26.3				SECT		- EAST	
003D	32.1				SECT	9	- EAST	
** ANALYTICA	L PARAMETER	: Zn						
001	247.0		276	5500	SECT		- NORTH	
001D	254.0				SECT		- NORTH	
002	250.0				SECT		- SOUTH	
002D	258.0				SECT		- SOUTH	
003	270.0				SECT		- EAST	
003D	292.0				SECT	9	- EAST	
** ANALYTICA	L PARAMETER:	: Cr						
001	13.4		15	2000	SECT	10	- NORTH	
002	14.3				SECT	10	- SOUTH	
003	13.4				SECT	10	- EAST	
** ANALYTICA	L PARAMETER:	: Cu						
001	19.4	-	20	10000	SECT	10	- NORTH	
002	19.5						- SOUTH	
003	18.2						- EAST	
** ***	T TO A TO A LANGUAGE .	. 31.7						
O01	L PARAMETER:	N1	47	1500	aram	4.0	Nonmu	
	15.1		17	1500			- NORTH	
002 003	16.9						- SOUTH	
003	15.7				SECT	10	- EAST	
	L PARAMETER:	Zn						
001	197.0		223	5500			- NORTH	
002	202.0						- SOUTH	
003	217.0				SECT	10	- EAST	

QUALITY ASSURANCE PROJECT PLAN FOR KUHLMAN DIECASTING SITE REMOVAL ACTION STANLEY, KANSAS

December 30, 1992

APPROVED:	() Cury	12/3/42
	on-Scene Coordinator	Date
	and John The Control of the Control	12/31/12
	Chief, Stite Investigation Section	Date
	Can Daly for RM	12/51/22
	Chief, Emergency Planning & Response Branch	Date/
രാജനത	A Distil	1/2/53
277/18	Regional Quality Assurance Officer	Date

93093 PPIGK 131

KUHLMAN DIECASTING COMPANY STANLEY, KANSAS

QUALITY ASSURANCE PROJECT PLAN REMOVAL ACTION

by

Tim Curry
Site Investigation Section
Emergency Planning & Response Branch
U.S. EPA Region VII

1.0 INTRODUCTION

This document is the Quality Assurance Project Plan (QAPP) for sampling activities at the restart of the Kuhlman Diecasting Site Removal Action, Stanley, Kansas. This QAPP specifies procedures that will be implemented to assure that all areas of the site which exceed action levels in surficial soils and interior dusts are Additional objectives for this identified for removal actions. QAPP are to ensure that the post-excavation and collection of verification samples will document that the levels of the heavy metals of concern in residual soils and dusts were reduced to a level which will be protective of human health. This QAPP is being sampling methods, developed to ensure all handling, documentation of sampling activities will be conducted according to U.S. Environmental Protection Agency (EPA) protocol.

2.0 PROJECT DESCRIPTION

2.1 Objectives and Approach

The primary objective of this QAPP is the identification of all surficial soils which exceed the site specific action levels. A previous sampling activity has identified dusts inside the building that will require a removal action. Soils and dusts which exceed the action levels will be excavated, collected, containerized and shipped off-site for disposal. identification of material to be removed has been facilitated through an intensive X-Ray Fluorescence (XRF) survey. An X-Met 880, XRF instrument was used to identify soil areas which may exceed the action levels. The secondary objective of this sampling activity is to conduct confirmation sampling utilizing the 95 percent Upper Confidence Level (95% UCL) sampling methodology for soils and High-Volume air samples for the dusts. Confirmation sampling will be conducted after removal of soils and dusts to verify the attainment of the Removal Action Levels (RALs).

2.2. Site Background

The Kuhlman Diecasting Company (KDC) site is located two miles southeast of Stanley, Kansas in Johnson County at 16400 Mission Road. This is a mixed rural residential and agricultural area.

KDC is located on approximately 39 acres bounded on the west and south by the Blue River, by farmland to the north, a small residential area of approximately six residences at the northeast corner and by Mission Road to the east. Approximately twenty five acres are protected from flooding events by an agricultural style levee. The site is bisected by a main rail of the Burlington Northern Railroad Company. Most of KDC's business operations occurred on the west side of the tracks where all manufacturing buildings and structures are located.

The buildings and structures are located within a meander of the Blue River in the alluvial plain. The Blue River flows in a southerly direction adjacent to KDC's wastewater treatment system then turns westerly along the southern border of the property. On site soils are a mixture of fill material and alluvial deposits of clays, silts and sands. Groundwater is encountered at a depth of about six to ten feet.

This site has previously been addressed by investigations and a removal action conducted between July 1991 and Results of the second phase assessment investigation identified four surface soil areas where heavy metal contamination is suspected to be present at levels that pose a health threat to the public. The areas immediately north, west and south of the west end of manufacturing building have been identified as having elevated levels of the heavy metals chromium, copper, nickel and zinc. A fourth area found at the northwest corner of the northern process water basin was also identified as containing elevated levels of copper and chromium. These areas are targeted for additional sampling to identify the nature and contamination and to develop work plans and disposal options.

2.3 Rationale for Sampling Activities

The rationale for the sampling activities proposed in this QAPP is to conduct 95% UCL sampling to delineate surface soil areas exceeding the RALs, verify cleanup utilizing the same methods and conduct aggressive air sampling methods for verifying cleanup of interior dusts that pose a threat to human health.

Following the delineation sampling, surface soil areas exceeding the RALs will undergo excavation, containerization and off-site disposal. An XRF instrument, calibrated with site specific soils, will be used as an aid in determining when RALs have been acheived. Following excavation the surface soils will be 95% UCL sampled to verify cleanup.

Interior air samples will be collected following the removal of dusts to verify that no health threat remains from exposures to dusts contaminated with heavy metals inside the building. Air samples will be collected utilizing a modification of 40 CFR Part 50, Appendix B, "Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High-Volume Method)". The modifications include enhancing air and dust movement inside the building utilizing air blowing equipment and eliminating the collection of unnecessary meteorlogical data. The samples collected will be analyzed for the heavy metals of concern, chromium, copper, nickel, and zinc. The results will be compared to OSHA Permissible Exposure Limits to determine if cleanup actions have been effective.

2.4 Anticipated Project Schedule

Within two weeks of approval of this QAPP 95% UCL samples to delineate the surface soil contamination will be collected. The results of these samples will be reviewed and selected samples will be resubmitted for TCLP analyses for disposal. Upon receipt of TCLP results the ERCS contractor will be tasked to begin making transport and disposal arrangements. Excavation of soils and dust removal will be scheduled to coincide with finalization of transport and disposal agreements. Following excavation, verification samples will be collected. Once cleanup has been verified the ERCS contractor will demobilize from the site.

3.0 KEY PERSONNEL

The following personnel are expected to be required to complete the pre-removal and post-removal sampling activities:

Tim Curry - EPA/EP&R, On-Scene Coordinator/Project Leader 1 E&E/TAT member for site safety and sample documentation 2 E&E/TAT members for sampling.

4.0 DATA QUALITY OBJECTIVES

The quality assurance objective for this project is to provide valid data of known and documented quality for use in determining that all levels of heavy metals in surface soils and interior dusts remaining on site after the removal action are below the RALs.

Soil and air samples submitted to EPA or to a CLP laboratory will undergo Level 2 minimal data review as defined in the EPA Standard Operating Procedure (SOP) #1610.2A. The measurement method (Field, analytical, and data reduction) for all samples submitted to EPA for analysis should give data with precision and accuracy for quality assurance level 3 (QA3) objectives in accordance with OSWER Directive 9360.4-01. Definitive identification, quantitation and analytical will error determined on all samples submitted to the lab. Analytical error will be determined by calculating the precision, accuracy and coefficient of variation. Precision, accuracy, and bias for the

analytical component of the measurement process will be computed for each performance evaluation (PE) sample concentration range. PE samples will be requested from EPA Region VII Quality Assurance Management Office (QAMO) for soil matrices. At a minimum a PE sample representing heavy metal concentrations slightly below and above the Removal Action Levels will be submitted with the postexcavation samples. Data comparability will be achieved by requiring all data generated for the project be expressed in common units and by using standard analytical procedures/methods. completeness, for the purpose of this project, is considered as a minimum of three valid replicate sample analyses be achieved for each 95% UCL exposure unit that is sampled. Data reported to the project leader by the laboratory branch in accordance with the LAST system is considered valid.

5.0 ACTION LEVELS

The following action levels are proposed for the surface soils (0" to 24") found at the Kuhlman Diecasting site. The soil action levels based future use the site are on of industrial/commercial facility. Should the action level exceeded in soils found below 24" in an exposure unit, the health risks of that concentration of metal will be evaluated by the EPA and the Agency for Toxic Substances and Disease Registry (ATSDR). A request has been sent to ATSDR for written concurrence of the proposed action levels. A table of action levels follows:

Parameter	Soil Depth	Total Concentration in mg/kg	OSHA PELs in mg/m ³
Chromium	0" to 24"	2000	0.5
Copper	0" to 24"	10000	1.0
Nickel	0" to 24"	1500	1.0
Zinc	0" to 24"	5500	5.0

6.0 SAMPLING AND ANALYSIS SUMMARY

All soil samples will be analyzed for total metals. Selected soil samples will be analyzed for TCLP metals for disposal purposes. All samples will be analyzed in conformance to CLP protocols.

The proposed number of samples for the delineation sampling activity for the site are located in Table 2. During verification sampling a 24-hour turn-around time is requested on all total metals samples. The quick turn-around is necessary in order to facilitate the progress of removal activities and prevent the removal contractor from waiting on "stand-by" for the reporting of

sample results. Verbal laboratory results for the total metals analyses collected during confirmation sampling are requested within 24 hours after the Region VII Laboratory has received the samples. During all aspects of the Remvoal Action, the EPA Project Leader will communicate directly with personnel from the Region VII Lab notifying them of anticipated sample delivery dates. An Analytical Services Request form is attached.

Table 2: Proposed Delineation Sam

MGP Code	Compound	EPA Method	Turnaround	Total No.
SM	Chromium	6010	2-week	45
SM	Copper	6010	2-week	45
SM	Nickel	6010	2-week	45
SM	Zinc	6010	2-week	45

It is anticipated that approximately eight to ten samples will be resubmitted for TCLP metals analysis following receipt of the total metals results.

7.0 SAMPLING PROCEDURES

7.1 Surficial Soil Sampling

The surface soils will be subdivided into sampling grids according to Region VII EPA SOP #2230.1A. The size and boundaries of specific sample grids will be based upon location, surface obstructions, topography and physical appearance. The areas of the sample grids will be in the range of 2,000 to 5,000 square feet. The boundaries of each grid will be clearly marked in case future precise warranted. The location. configuration of the soil-sample grids cannot be specified at this time but will be determined in the field based on the abovedescribed considerations. It will require a maximum of twelve to fourteen sample grids to cover the representative study area. All sample grids will be analyzed for total metals. Following receipt of the total metals results selected samples may be re-submitted for TCLP metals analyses.

Three replicate samples consisting of a mimimum of 36 and a maximum of 50 equidistantly spaced aliquots, 0 to 2 inches in depth, will be collected from each grid area. The upper 95 percent confidence level (UCL) concentration of the total metals chromium, copper, nickel and zinc for each grid area will be statistically calculated based on the three replicate sample results in accordance with Region VII SOP #2230.1A. Replicate results will be compared and outliers will be determined according to Region VII SOP #2210.1A.

7.2 Verification Air Sampling

Air samples will be collected inside the building office areas following removal of dusts. These samples are intended to show that the dust removal actions are completed and no further health threats are posed by the heavy metal contaminants inside the These samples will be collected in accordance with 40 CFR Part 50, Appendix B, "Reference Method for the Determination of Lead in Suspended Particulate Matter From Ambient Air". method will be modified in order to collect a "worst case" indoor air sample by operating blowers inside the office areas during the The blowers will agitate any remaining dust so sample collection. that it is airborne and will be collected during the sampling. Meteorlogical data regarding wind speed and direction are not necessary for this activity. There will be three high volume samplers operated during the sample period of eight hours. Two of the samplers will be located together in order to obtain a duplicate sample for analysis. A blank sample will also be submitted with this activity for a total of four air samples. samples will be analyzed for total metals. The sample results will be compared to the OSHA PELs.

8.0 REQUIRED EQUIPMENT

All expendable sampling equipment will be itemized in the Technical Assistance Team (TAT) Health and Safety Plan. The TAT will prepare a site specific H&S plan prior to initiation of sampling activities.

9.0 CALIBRATION PROCEDURES AND PREVENTIVE MAINTENANCE OF FIELD EQUIPMENT

Calibration and preventive maintenance of field equipment will be conducted prior to each sampling activity according to the manufacturers instructions.

10.0 SAMPLE HANDLING, CUSTODY, AND DOCUMENTATION PROCEDURES

10.1 Sample Containers/Preservation/Holding Times

All samples will be contained and preserved in accordance with EPA Region VII SOP #2130.4A. Soil samples will be collected in 8-ounce laboratory cleaned glass jars. Air samples will be collected on fiber glass filters which will be transported in plastic, zip-lock bags. All samples collected for metals analysis do not require preservatives and ahve a holding time of 6-months.

10.2 Chain-of-Custody/Field Documentation/Sample Shipment

Field documentation, sample shipment, and chain-of-custody will be carried out in accordance with EPA Region VII SOPs #2130.2A and #2130.3A.

During soil sampling the time of collection, location, sample depth, grid section, and other pertinent information will be documented on field sheets and in the sample teams field logbook. During air sampling the time of collection, location, sampler number, duration of operation and total air volume passing through the sampler will be documented on the field sheets and in the logbook. Samples being shipped off-site will be conveyed by the sampler to the laboratory as quickly as possible. Soil samples will be placed in plastic bags and stored in coolers. Chain-of-custody and field sheets will be taped to the bottom of the cooler lid.

11.0 SITE SAFETY

Site safety is specifically addressed in the site-specific Health and Safety Plan. Each regional contractor working on the site will be required to have an approved Health and Safety Plan prior to commencing removal or sampling activities.

12.0 DECONTAMINATION PROCEDURES

12.1 Personnel Protective Gear

Non-disposable gear such as respirators will be washed in an alconox solution and rinsed in potable water at the decontamination station. All other personnel protective gear, tyvek, booties, gloves, will be double-bagged and disposed of during the removal action. Personal protective equipment will be discussed in the contractors site specific health and safety plan.

12.2 Sampling Equipment

During soil sampling, all equipment (aluminum pie pans, spoons, gloves, aliquot flags) will be considered expendable. After use, all sampling expendables will be double-bagged in plastic drum liners and disposed of with other removal derived waste. Surveyors tape used to measure out aliquot locations will be washed in an Alconox wash, and tap water rinsed.

13.0 MANAGEMENT OF SITE-DERIVED WASTE MATERIALS

During the removal action, all site-derived waste materials will be double-bagged, labeled, and segregated on-site for disposal. Site-derived waste materials will not be transported back to the EPA Region VII Laboratory for disposal.

14.0 ANALYTICAL METHODS

14.1 Requested Analyses and Detection Limits

Soil and air samples will be analyzed for the total metals chromium, copper, nickel and zinc by inductively coupled plasma (ICP) atomic emission spectroscopy utilizing procedures comparable to EPA SW-846 method 6010. The normal detection limits

for these analyses will be sufficient for this QAPP. The field data regarding volume of air sampled will be used to calculate the ambient air concentration by the laboratory prior to reporting.

14.2 Quality Control

The projects Quality Assurance (QA) program contains specific Quality Control (QC) practices designed to assess data precision and accuracy by detecting and measuring the degree of error in the measurement process. These QC practices include the use of field blanks (F), duplicates (D), and performance evaluation samples (PE). One duplicate soil sample will be submitted for every 20 soil samples collected. One collocated sample and one blank will be submitted with the air samples. For the purpose of determining precision a minimum of three duplicates will be collected during this activity. Two PE samples are anticipated to be available for submittal with the post-excavation verification samples.

14.3 Data Review, Validation and Reporting

Data review, validation, and reporting procedures for samples submitted to the laboratory for analysis are included in EPA SOP #1610.3A. Preliminary data review is done by the analyst. The data are then reviewed and approved by the analytical section supervisor. Final review and approval is performed by the OSC.

ATTACHMENTS

- 1. Site Map
- 2. Analytical Services Request Form

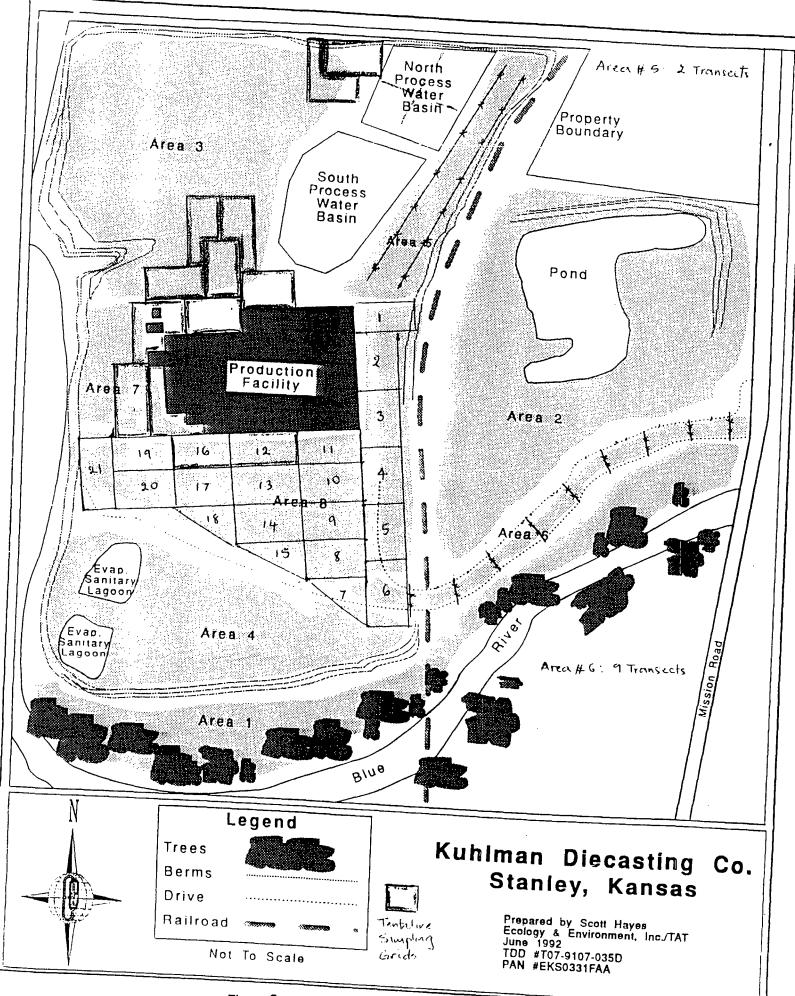


Figure 3: Site Sketch of Sampling Strata

FIELD SHEET

ENVIRON	U.S. ENVIRONMENTAL MENTAL SERVICES DIV.	PROTECT 25 FU	ION AG NSTON	GENCY, F	REGION SAS CIT	VII Y, KS (66115	
FY: 93 ACT	NO: BGXGK SAMNO: 001	QCC:	MEDIA	A: SOIL	PL: C	URRY,	г.	
	ES: KUHLMAN DIECASTI STANLEY		JECT N		REF L PT: L			_
SAMPLE DES LOCATION: CASE/BATCH, STORET/AIRS	Sec # / /SMO:/_/	KS LAB:		BEG: <u>3</u> END: <u>3</u>	DATE <u> 5</u> 93 <u>5</u> 9 <u>3</u>	TIME :; _/ø:	FROM REF EAST: NORTH: DOWN:	
ANALYSIS RI CONTAINER GLASS GLASS GLASS GLASS	PRESERVATIVE COOL (4 C)	SM09 SM13	COPPE NICKE	IIUM, TOTAI CR, TOTAI CL, TOTAI TOTAL,	BY I BY I	CAP CAP		
	FOR SUPERFUND ONLY:	SUBSIT		CNTIFIER:	OP	ERABLE	UNIT:	

SAMPLE COLLECTED BY: S. Hayes

FIELD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: 002 QCC: MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: LOCATION: STANLEY KS PROJECT NUM: A31 PT: LONGITUDE: SAMPLE DES: South DATE TIME FROM REF PT

KS BEG: 3 //5 / 93 _: EAST:

LAB: END: 3 //5 / 93 /\(\delta\): \(\delta\) NORTH: LOCATION: Sec CASE/BATCH/SMO: STORET/AIRS NO: DOWN: ANALYSIS REQUESTED: PRESERVATIVE MGP NAME

COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP

COOL (4 C) SM09 COPPER, TOTAL, BY ICAP

COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP

COOL (4 C) SM20 ZINC, TOTAL, BY ICAP CONTAINER GLASS GLASS GLASS GLASS COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: OPERABLE UNIT: the aliquots 0-2" desth

SAMPLE COLLECTED BY : B. BROOKS

SAMPLE COLLECTED BY : L Claytol

30 aliquots 0-2" depth

DRAFT FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: 004 QCC: _ MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: LOCATION: STANLEY KS PROJECT NUM: A31 PT: LONGITUDE: SAMPLE DES: North DATE TIME FROM REF PT

KS

BEG: _/_/ _ : EAST:

END: _3 / _5 / _93 // : oo NORTH:

DATE TIME FROM REF PT

EAST:

POWN: CASE/BATCH/SMO: ___/
STORET/AIRS NO: DOWN: ANALYSIS REQUESTED: PRESERVATIVE MGP NAME
COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP
COOL (4 C) SM09 COPPER, TOTAL, BY ICAP
COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP
COOL (4 C) SM20 ZINC, TOTAL, BY ICAP CONTAINER GLASS

COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: OPERABLE UNIT:

41 aliquots 0-2" desth

GLASS GLASS GLASS

SAMPLE COLLECTED BY: 5. Hayes

FIELD SHEET

		INSTON AGENCY, REGION VII INSTON RD. KANSAS CITY, KS 66115
FY: 93 ACTNO: BGXGK SAMNO: 005	QCC:	MEDIA: SOIL PL: CURRY, T.
ACTIVITY DES: KUHLMAN DIECASTIN LOCATION: STANLEY K		
SAMPLE DES: South LOCATION: Sec # 2 K CASE/BATCH/SMO:/_/ STORET/AIRS NO:	S LAB:	DATE TIME FROM REF PT BEG: _/_/_ :_ EAST: END: 3 /15/93 //: 60 NORTH: DOWN:
ANALYSIS REQUESTED: CONTAINER PRESERVATIVE GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C)	SM08 SM09 SM13	COPPER, TOTAL, BY ICAP NICKEL, TOTAL, BY ICAP
comments: for superfund only:	SUBSIT	TE IDENTIFIER: OPERABLE UNIT:

SAMPLE COLLECTED BY : B. Bhooks

FIELD SHEET

	ROTECTION AGENCY, REGION VII 25 FUNSTON RD. KANSAS CITY, KS 66115
FY: 93 ACTNO: BGXGK SAMNO: 006	QCC: _ MEDIA: SOIL PL: CURRY, T.
ACTIVITY DES: KUHLMAN DIECASTIN LOCATION: STANLEY K	G C/O REF LATITUDE: S PROJECT NUM: A31 PT: LONGITUDE:
SAMPLE DES: East LOCATION: Sec. # 2 K CASE/BATCH/SMO: // STORET/AIRS NO:	DATE TIME FROM REF PT BEG: _/_/:_ EAST: LAB: END: 3 / 15 / 95 // : 00 NORTH: DOWN:
ANALYSIS REQUESTED: CONTAINER PRESERVATIVE GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C)	MGP NAME SM08 CHROMIUM, TOTAL, BY ICAP SM09 COPPER, TOTAL, BY ICAP SM13 NICKEL, TOTAL, BY ICAP SM20 ZINC, TOTAL, BY ICAP
comments: for superfund only: 41 a liquots	SUBSITE IDENTIFIER: OPERABLE UNIT:

SAMPLE COLLECTED BY: Locator

DRAFT		FIELD SHEET			
U.S	S. ENVIRONMENTAL	PROTECTION	AGENCY, R	EGION VII	
	AL SERVICES DIV				66115
FY: 93 ACTNO:	BGXGK SAMNO: 00	7 QCC: MED	IA: SOIL	PL: CURRY,	т.
ACTIVITY DES: LOCATION: STAN	KUHLMAN DIECAST	ING C/O KS PROJECT	NUM: A31	REF LATITUE PT: LONGITU	
SAMPLE DES: LOCATION: CASE/BATCH/SMC STORET/AIRS NO		KS LAB:	BEG:	DATE TIME : <u>/5</u> 9 <u>5</u>	EAST:

ANALYSIS REQUESTED:

CONTAINER PRESERVATIVE MGP NAME
GLASS COOL (4 C) SM08 CHROMIUM, T

GLASS COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP GLASS COOL (4 C) SM09 COPPER, TOTAL, BY ICAP GLASS COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP GLASS COOL (4 C) SM20 ZINC, TOTAL, BY ICAP

COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: ___ OPERABLE UNIT: ___

40 aliquots o-2" depth

SAMPLE COLLECTED BY : 5. Hayes

FIELD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: 008 QCC: MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: LOCATION: STANLEY KS PROJECT NUM: A31 PT: LONGITUDE: SAMPLE DES: South STORET/AIRS NO: DOWN: ANALYSIS REQUESTED: PRESERVATIVE MGP NAME
COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP
COOL (4 C) SM09 COPPER, TOTAL, BY ICAP
COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP
COOL (4 C) SM20 ZINC, TOTAL, BY ICAP CONTAINER PRESERVATIVE GLASS GLASS GLASS GLASS COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: ___ OPERABLE UNIT: ___ 40 aliquots o-2" desth

SAMPLE COLLECTED BY : B. Blooks

DRAFT FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: 009 QCC: _ MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: KS PROJECT NUM: A31 PT: LONGITUDE: LOCATION: STANLEY SAMPLE DES: East LOCATION: CASE/BATCH/SMO: STORET/AIRS NO: DOWN: ANALYSIS REQUESTED: PRESERVATIVE MGP NAME

COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP

COOL (4 C) SM09 COPPER, TOTAL, BY ICAP

COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP

COOL (4 C) SM20 ZINC, TOTAL, BY ICAP CONTAINER GLASS GLASS GLASS GLASS

COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: OPERABLE UNIT:

40 aliquots o-2" depth

SAMPLE COLLECTED BY: & Claylok

	FI S. ENVIRONMENTAL I TAL SERVICES DIV.		ION AG				66115	
FY: 93 ACTNO:	BGXGK SAMNO: 010	QCC: _	MEDIA	: SOIL	PL: C	URRY,	 r.	
LOCATION: STAN	_	NG C/O	JECT N	UM: A31	REF L.	ATITUDI ONGITUI	E:	
SAMPLE DES:	<u>Sec. # 4 </u>	(S LAB:		BEG: END: <u>3</u>	DATE _// _/5/93	TIME : /3:00	FROM REF EAST: NORTH: DOWN:	PT
ANALYSIS REQUE CONTAINER GLASS GLASS GLASS GLASS	PRESERVATIVE COOL (4 C) COOL (4 C) COOL (4 C) COOL (4 C)	MGP SM08 SM09 SM13 SM20	NAME CHROMI COPPEI NICKEI ZINC,	IUM, TO R, TOTA L, TOTA TOTAL,	TAL, BY L, BY IO L, BY IO BY ICA	ICAP CAP CAP P		
	Superfund only:			NTIFIER		ERABLE	UNIT:	

SAMPLE COLLECTED BY: 5. Hayes

DRAFT FIELD SHEET U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115					
FY: 93 ACTNO: BGXGK SAMNO: 011	QCC: _ MEDIA: SOIL PL: CURRY, T.				
ACTIVITY DES: KUHLMAN DIECASTING LOCATION: STANLEY KS	C DDOTECH NIM. 321 DM. LONGTHUDE.				
SAMPLE DES: Saft LOCATION: Sec # 4 KS CASE/BATCH/SMO: /_/ STORET/AIRS NO:	DATE TIME FROM REF PT BEG: _/_/_ :_ EAST: LAB: END:/93				
ANALYSIS REQUESTED: CONTAINER PRESERVATIVE GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C)	MGP NAME SM08 CHROMIUM, TOTAL, BY ICAP SM09 COPPER, TOTAL, BY ICAP SM13 NICKEL, TOTAL, BY ICAP				
comments: for superfund only: 36 a liquo + 5	SUBSITE IDENTIFIER: OPERABLE UNIT:				

SAMPLE COLLECTED BY: 5 Fage S

DRAFT

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII

25 FUNCTION RD. KANSAS CITY, K ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: 012 QCC: _ MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: LOCATION: STANLEY KS PROJECT NUM: A31 PT: LONGITUDE: SAMPLE DES: East SAMPLE DES: East DATE TIME FROM REF PT LOCATION: Sec #4 KS BEG: // : EAST: CASE/BATCH/SMO: // LAB: END: 3/5/93 /3:ac NORTH: STORET/AIRS NO: DOWN: ANALYSIS REQUESTED: PRESERVATIVE MGP NAME

COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP

COOL (4 C) SM09 COPPER, TOTAL, BY ICAP

COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP

COOL (4 C) SM20 ZINC, TOTAL, BY ICAP CONTAINER GLASS GLASS GLASS GLASS COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: OPERABLE UNIT: 36 aliquots o-z" destu

SAMPLE COLLECTED BY : R

DRAFT U. ENVIRONMEN	F S. ENVIRONMENTAL TAL SERVICES DIV.	IELD SH PROTECT 25 FU	ION AGENCY	Y, REGIO KANSAS C	N VII EITY, KS	66115
FY: 93 ACTNO:	BGXGK SAMNO: 013	QCC: _	MEDIA: SO	DIL PL:	CURRY,	 Г.
LOCATION: STA		KS PRO	JECT NUM:	A31 PT:	LONGITU	DE:
SAMPLE DES: _ LOCATION: CASE/BATCH/SM STORET/AIRS N	Noveth Sec. #5 0:	KS LAB:	BEG ENI	DATE G: _/_/ D: <u>3</u> / <u>/5</u> /	TIME 73 /3:30	FROM REF PT EAST: NORTH: DOWN:
ANALYSIS REQU CONTAINER GLASS GLASS GLASS GLASS	PRESERVATIVE COOL (4 C) COOL (4 C) COOL (4 C) COOL (4 C)	MGP SM08 SM09 SM13 SM20	NAME CHROMIUM, COPPER, T NICKEL, T ZINC, TOT	TOTAL, TOTAL, BY TOTAL, BY TAL, BY I	BY ICAP ICAP ICAP CAP	
COMMENTS: FO	R SUPERFUND ONLY:	SUBSIT	re identif	FIER:	OPERABLE	UNIT:
44 6	aliquots	0-2"	desth			

SAMPLE COLLECTED BY: 5. Hayes

FIELD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: 014 QCC: _ MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: LOCATION: STANLEY KS PROJECT NUM: A31 PT: LONGITUDE: SAMPLE DES: South DATE TIME FROM REF LOCATION: Sec#5 KS BEG: / / : EAST: CASE/BATCH/SMO: _ / / LAB: END: 3 /15 /93 /3:30 NORTH: STORET/AIRS NO: ____ TIME FROM REF PT ANALYSIS REQUESTED: PRESERVATIVE MGP CONTAINER NAME COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP
COOL (4 C) SM09 COPPER, TOTAL, BY ICAP
COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP
COOL (4 C) SM20 ZINC, TOTAL, BY ICAP GLASS GLASS GLASS GLASS COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: OPERABLE UNIT: 44 aliquots o-z" desta

SAMPLE COLLECTED BY: B. Baks

FIELD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: 015 QCC: _ MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: LOCATION: STANLEY KS PROJECT NUM: A31 PT: LONGITUDE: _____ SAMPLE DES: <u>East</u> CASE/BATCH/SMO: STORET/AIRS NO: DOWN: ANALYSIS REQUESTED: PRESERVATIVE MGP NAME
COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP
COOL (4 C) SM09 COPPER, TOTAL, BY ICAP
COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP
COOL (4 C) SM20 ZINC, TOTAL, BY ICAP CONTAINER GLASS GLASS GLASS GLASS COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: ___ OPERABLE UNIT: ___ 0-2" desta 4.4 aliquots

SAMPLE COLLECTED BY : Registed

FIELD SHEET

		ON AGENCY, REGION VII STON RD. KANSAS CITY, KS 66115
FY: 93 ACTNO: BGXGK SAMNO: 016 (CC: _ M	MEDIA: SOIL PL: CURRY, T.
ACTIVITY DES: KUHLMAN DIECASTING LOCATION: STANLEY	C/O PROJE	REF LATITUDE:
SAMPLE DES: Noth LOCATION: Sec. # 6 KS CASE/BATCH/SMO: // STORET/AIRS NO:	LAB: _	DATE TIME FROM REF PT BEG: _/ / : EAST: END: 3 /(5 / 93 /3 : 45 NORTH: DOWN:
ANALYSIS REQUESTED: CONTAINER PRESERVATIVE GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C)	MGP N. SM08 C. SM09 C. SM13 N. SM20 Z.	NAME CHROMIUM, TOTAL, BY ICAP COPPER, TOTAL, BY ICAP VICKEL, TOTAL, BY ICAP CINC, TOTAL, BY ICAP
comments: for superfund only: 22 alignots		identifier: operable unit:

SAMPLE COLLECTED BY : _S. Hayes_____

FIELD SHEET

	ROTECTION AGENCY, REGION VII 25 FUNSTON RD. KANSAS CITY, KS 66115
FY: 93 ACTNO: BGXGK SAMNO: 017	QCC: _ MEDIA: SOIL PL: CURRY, T.
LOCATION: STANLEY K	G C/O REF LATITUDE:
SAMPLE DES: South LOCATION: Sec 6 KS CASE/BATCH/SMO: // STORET/AIRS NO:	DATE TIME FROM REF PT BEG: / / : EAST: LAB: END: 3 //5 / 93 /3 : 45 NORTH: DOWN:
ANALYSIS REQUESTED: CONTAINER PRESERVATIVE GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C)	MGP NAME SM08 CHROMIUM, TOTAL, BY ICAP SM09 COPPER, TOTAL, BY ICAP SM13 NICKEL, TOTAL, BY ICAP SM20 ZINC, TOTAL, BY ICAP
comments: for superfund only: 22 aliquots	SUBSITE IDENTIFIER: OPERABLE UNIT:

SAMPLE COLLECTED BY: B Bdooks

U.S. ENVIRONMENTAL PR	ELD SHEET ROTECTION AGENCY, REGION VII 25 FUNSTON RD. KANSAS CITY, KS 66115
FY: 93 ACTNO: BGXGK SAMNO: 018 (QCC: _ MEDIA: SOIL PL: CURRY, T.
ACTIVITY DES: KUHLMAN DIECASTING LOCATION: STANLEY KS	REF LATITUDE:
SAMPLE DES: <u>Eas</u> † LOCATION: <u>Sec.</u> #6 KS CASE/BATCH/SMO:/_ STORET/AIRS NO:	DATE TIME FROM REF PT BEG: _/_/ _ :_ EAST: LAB: _ END: / _ / _ / _ / _ / _ / _ DOWN:
ANALYSIS REQUESTED: CONTAINER PRESERVATIVE GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C)	MGP NAME SM08 CHROMIUM, TOTAL, BY ICAP SM09 COPPER, TOTAL, BY ICAP SM13 NICKEL, TOTAL, BY ICAP SM20 ZINC, TOTAL, BY ICAP
	SUBSITE IDENTIFIER: OPERABLE UNIT:
22 a liquo 13	0-2° dest4

SAMPLE COLLECTED BY: Register

DRAFT

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII

25 FUNCTION RD. KANSAS CITY, K ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: 019 QCC: _ MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: LOCATION: STANLEY KS PROJECT NUM: A31 PT: LONGITUDE: SAMPLE DES: Nodf4

 SAMPLE DES:
 //od/4
 DATE
 TIME
 FROM REF PT

 LOCATION:
 Sec # 7
 KS
 BEG: // : EAST:
 END: 3 //s / 93 /4: 30 NORTH:
 NORTH:

 STORET/AIRS NO:
 DOWN:

 ANALYSIS REQUESTED: PRESERVATIVE MGP NAME
COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP
COOL (4 C) SM09 COPPER, TOTAL, BY ICAP
COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP
COOL (4 C) SM20 ZINC, TOTAL, BY ICAP CONTAINER GLASS GLASS GLASS GLASS COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: ___ OPERABLE UNIT: ___ 46 Aliquots 0-z" desth

SAMPLE COLLECTED BY: 5 Haves

FIELD SHEET

	ROTECTION AGENCY, REGION VII 25 FUNSTON RD. KANSAS CITY, KS 66115
FY: 93 ACTNO: BGXGK SAMNO: 020 (QCC: _ MEDIA: SOIL PL: CURRY, T.
ACTIVITY DES: KUHLMAN DIECASTING LOCATION: STANLEY KS	G C/O REF LATITUDE:
SAMPLE DES: South LOCATION: Sec. # 7 KS CASE/BATCH/SMO: // STORET/AIRS NO:	DATE TIME FROM REF PT BEG: _/_/_ : EAST: LAB: END:/93 /4:30 NORTH: DOWN:
ANALYSIS REQUESTED: CONTAINER PRESERVATIVE GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C)	SM09 COPPER, TOTAL, BY ICAP SM13 NICKEL, TOTAL, BY ICAP
	SUBSITE IDENTIFIER: OPERABLE UNIT:

SAMPLE COLLECTED BY : Blacks

FIELD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: 021 QCC: MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: LOCATION: STANLEY KS PROJECT NUM: A31 PT: LONGITUDE: DATE TIME FROM REF

| LAB: | BEG: _/_/ : EAST: |
| LAB: | END: 3 / 15 / 93 / 14 : 36 |
| DATE TIME FROM REF SAMPLE DES: East TIME FROM REF PT LOCATION: CASE/BATCH/SMO: STORET/AIRS NO: DOWN: ANALYSIS REQUESTED: PRESERVATIVE MGP NAME
COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP
COOL (4 C) SM09 COPPER, TOTAL, BY ICAP
COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP
COOL (4 C) SM20 ZINC, TOTAL, BY ICAP CONTAINER GLASS GLASS GLASS GLASS COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: ___ OPERABLE UNIT: ___ 0-2" desta 46 Aliquots

SAMPLE COLLECTED BY : 2 Chipok

FIELD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII
ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115

FY: 93 ACTNO: BGXGK SAMNO: 022 QCC: MEDIA: SOIL PL: CURRY, T.

ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: LOCATION: STANLEY KS PROJECT NUM: A31 PT: LONGITUDE: SAMPLE DES: KS PROJECT NUM: A31 PT: LONGITUDE: SAMPLE DES: KS BEG: // : EAST: CASE/BATCH/SMO: // LAB: END: 3/5/73 //: 45 NORTH: DOWN:

ANALYSIS REQUESTED: CONTAINER PRESERVATIVE MGP NAME GLASS COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP GLASS COOL (4 C) SM09 COPPER, TOTAL, BY ICAP GLASS COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP GLASS COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP GLASS COOL (4 C) SM20 ZINC, TOTAL, BY ICAP

COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: OPERABLE UNIT: SO Aliquots

COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: OPERABLE UNIT:

SAMPLE COLLECTED BY: 5. Hale 5

FIELD SHEET

	IRONMENTAL PROTECT RVICES DIV. 25 F			56115
FY: 93 ACTNO: BGXGK	SAMNO: 023 QCC:	MEDIA: SOIL I	PL: CURRY, T	?.
ACTIVITY DES: KUHLM LOCATION: STANLEY	AN DIECASTING C/O KS PR	OJECT NUM: A31	REF LATITUDE PT: LONGITUE	
SAMPLE DES: LOCATION: CASE/BATCH/SMO: STORET/AIRS NO:	South 8 KS _/_/ KS / LAB	DA BEG:/ END: _3_//_	ATE TIME _/: <u>s-</u> / <u>93</u> <u>74</u> : <u>45</u>	FROM REF PT EAST: NORTH: DOWN:
GLASS COO. GLASS COO.	L (4 C) SM08	CHROMIUM, TOTAL COPPER, TOTAL, NICKEL, TOTAL,	BY ICAP BY ICAP	
comments: for super	RFUND ONLY: SUBS	ite identifier:_	OPERABLE	UNIT:

SAMPLE COLLECTED BY: B. Blooks

50 Aliquots 0-2° depth

SAMPLE COLLECTED BY: L. Claytok

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII
ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115

FY: 93 ACTNO: BGXGK SAMNO: 025 QCC: MEDIA: SOIL PL: CURRY, T.

ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE:
LOCATION: STANLEY KS PROJECT NUM: A31 PT: LONGITUDE:

SAMPLE DES: Note of the control of the

ANALYSIS REQUESTED:

STORET/AIRS NO:

CONTAINER PRESERVATIVE MGP NAME
GLASS COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP
GLASS COOL (4 C) SM09 COPPER, TOTAL, BY ICAP
GLASS COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP
GLASS COOL (4 C) SM20 ZINC, TOTAL, BY ICAP

COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: OPERABLE UNIT:

48 Aliquots

o-z" desta

DOWN:

SAMPLE COLLECTED BY : 5 Hayes

FIELD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: QCC: MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: KS PROJECT NUM: A31 PT: LONGITUDE: LOCATION: STANLEY SAMPLE DES: North TIME FROM REF PT LOCATION: CASE/BATCH/SMO: STORET/AIRS NO: DOWN: ANALYSIS REQUESTED: PRESERVATIVE MGP NAME CONTAINER COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP
COOL (4 C) SM09 COPPER, TOTAL, BY ICAP
COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP
COOL (4 C) SM20 ZINC, TOTAL, BY ICAP GLASS GLASS GLASS GLASS COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: OPERABLE UNIT: 48 Aliquots 0-2" depth

SAMPLE COLLECTED BY : 5 Hayes

FIELD SHEET

	ROTECTION AGENCY, REGION VII 25 FUNSTON RD. KANSAS CITY, KS 66115
FY: 93 ACTNO: BGXGK SAMNO: 026 (QCC: _ MEDIA: SOIL PL: CURRY, T.
	REF LATITUDE:
SAMPLE DES: South LOCATION: Soc # 9 KS CASE/BATCH/SMO:/_ STORET/AIRS NO:	DATE TIME FROM REF PT BEG: _/ /_ : EAST: LAB: END: 3 / 15 / 95 / 15: 10 DOWN:
ANALYSIS REQUESTED: CONTAINER PRESERVATIVE GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C)	MGP NAME SM08 CHROMIUM, TOTAL, BY ICAP SM09 COPPER, TOTAL, BY ICAP SM13 NICKEL, TOTAL, BY ICAP SM20 ZINC, TOTAL, BY ICAP
comments: for superfund only: 48 Aliquots	SUBSITE IDENTIFIER: OPERABLE UNIT:

SAMPLE COLLECTED BY: BRooks

FIELD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: 44 QCC: 2 MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: KS PROJECT NUM: A31 PT: LONGITUDE: LOCATION: STANLEY SAMPLE DES: DATE TIME FROM REF PT EAST: LOCATION: CASE/BATCH/SMO: STORET/AIRS NO: DOWN: ANALYSIS REQUESTED: PRESERVATIVE MGP CONTAINER NAME COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP
COOL (4 C) SM09 COPPER, TOTAL, BY ICAP
COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP
COOL (4 C) SM20 ZINC, TOTAL, BY ICAP GLASS GLASS GLASS GLASS COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: ___ OPERABLE UNIT: ___ 48 Aliquots o-z" dest4

SAMPLE COLLECTED BY : B. Blooks

FIELD SHEET

	L PROTECTION AGENCY, REGION VII V. 25 FUNSTON RD. KANSAS CITY, KS 66115
FY: 93 ACTNO: BGXGK SAMNO: 03	27 QCC: _ MEDIA: SOIL PL: CURRY, T.
	KS PROJECT NUM: A31 PT: LONGITUDE:
SAMPLE DES: East LOCATION: Sec #7 CASE/BATCH/SMO:/_/ STORET/AIRS NO:	DATE TIME FROM REF PT KS BEG: _/ / _ : EAST: LAB: _ END: 3 / 5 / 93 / 5 : 10 NORTH: DOWN:
ANALYSIS REQUESTED: CONTAINER PRESERVATIVE GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C) GLASS COOL (4 C)	SMO8 CHROMIUM, TOTAL, BY ICAP
	Y: SUBSITE IDENTIFIER: OPERABLE UNIT:

SAMPLE COLLECTED BY: 2 Clartol

FIELD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: QCC: D MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: LOCATION: STANLEY KS PROJECT NUM: A31 PT: LONGITUDE: SAMPLE DES: East DATE TIME FROM R.

9 KS BEG: _/_/ : EAST:
// LAB: END: 3 /5 /93 /5: /0 NORTH: FROM REF PT LOCATION: CASE/BATCH/SMO: STORET/AIRS NO: DOWN: ANALYSIS REQUESTED: CONTAINER PRESERVATIVE MGP NAME COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP GLASS COOL (4 C) SM09 COPPER, TOTAL, BY ICAP
COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP
COOL (4 C) SM20 ZINC, TOTAL, BY ICAP GLASS GLASS GLASS COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: OPERABLE UNIT: 48 Aliquots 0-2" desta

SAMPLE COLLECTED BY : R Clayton

FIELD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: 028 QCC: _ MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: LOCATION: STANLEY KS PROJECT NUM: A31 PT: LONGITUDE: SAMPLE DES: No. 274 SAMPLE DES: No.244

LOCATION: Sec /o KS

CASE/BATCH/SMO: // LAB: END: 3 //5 / 93 /5:30 NORTH:

STORET/AIRS NO: TIME FROM REF PT STORET/AIRS NO: DOWN: ANALYSIS REQUESTED: PRESERVATIVE CONTAINER MGPNAME COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP
COOL (4 C) SM09 COPPER, TOTAL, BY ICAP
COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP
COOL (4 C) SM20 ZINC, TOTAL, BY ICAP GLASS GLASS GLASS GLASS COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: OPERABLE UNIT: 50 Aliquots

0-2" depth

SAMPLE COLLECTED BY : 5 Heges

FIELD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: 029 QCC: _ MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: KS PROJECT NUM: A31 PT: LONGITUDE: LOCATION: STANLEY SAMPLE DES: South DATE TIME FROM REF PT LOCATION: 5c= 4/0 | KS | BEG: / / : EAST: CASE/BATCH/SMO: / / LAB: END: 3 //5 //93 //5:30 NORTH: STORET/AIRS NO: DOWN: ANALYSIS REQUESTED: PRESERVATIVE MGP NAME
COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP
COOL (4 C) SM09 COPPER, TOTAL, BY ICAP
COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP
COOL (4 C) SM20 ZINC, TOTAL, BY ICAP CONTAINER GLASS GLASS GLASS GLASS COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: OPERABLE UNIT: 0-2" dept4 50 Aliquots

SAMPLE COLLECTED BY : BROKS

FIELD SHEET

U.S. ENVIRONMENTAL PROTECTION AGENCY, REGION VII ENVIRONMENTAL SERVICES DIV. 25 FUNSTON RD. KANSAS CITY, KS 66115 FY: 93 ACTNO: BGXGK SAMNO: 030 QCC: _ MEDIA: SOIL PL: CURRY, T. ACTIVITY DES: KUHLMAN DIECASTING C/O REF LATITUDE: LOCATION: STANLEY KS PROJECT NUM: A31 PT: LONGITUDE: SAMPLE DES: East

LOCATION: Sec #/o KS

CASE/BATCH/SMO: // LAB: END: 3//5/93 /5: 30 NORTH: SAMPLE DES: <u>East</u> STORET/AIRS NO: DOWN: ANALYSIS REQUESTED: PRESERVATIVE MGP NAME
COOL (4 C) SM08 CHROMIUM, TOTAL, BY ICAP
COOL (4 C) SM09 COPPER, TOTAL, BY ICAP
COOL (4 C) SM13 NICKEL, TOTAL, BY ICAP
COOL (4 C) SM20 ZINC, TOTAL, BY ICAP CONTAINER GLASS GLASS GLASS GLASS COMMENTS: FOR SUPERFUND ONLY: SUBSITE IDENTIFIER: ___ OPERABLE UNIT: ___ 50 Aliquots 0-z" desta

SAMPLE COLLECTED BY: Rejected.

ANALYSIS REQUEST REPORT

LABORATORY APPROVED DATA PROJECT LEADER APPROVAL PENDING

FOR ACTIVITY: BGXGK

CURRY, T.

03/29/93 16:32:01

ALL REAL SAMPLES AND FIELD Q.C.

* LABO APPROVED

FY: 93 ACTIVITY: BGXGK

DESCRIPTION: KUHLMAN DIECASTING C/O

LOCATION: STANLEY

KANSAS

STATUS: ACTIVE

TYPE: SAMPLING - IN HOUSE ANALYSIS

PROJECT:

A31

LABO DUE DATE IS 5/15/93.

REPORT DUE DATE IS 3/15/94.

INSPECTION DATE: 3/15/93

ALL SAMPLES RECEIVED DATE: 03/16/93

ALL DATA APPROVED BY LABO DATE: 03/29/93

FINAL REPORT TRANSMITTED DATE: 00/00/00

EXPECTED LABO TURNAROUND TIME IS 60 DAYS

EXPECTED REPORT TURNAROUND TIME IS 365 DAYS

ACTUAL LABO TURNAROUND TIME IS 13 DAYS

ACTUAL REPORT TURNAROUND TIME IS O DAYS

SITE CODE:

SITE:

SAMP NO.	OCC M	DESCRIPTION	SAMPLE STATUS	# CIT	TY STATE	AIRS/ STORET LAY- BEG. LOC NO SECT ER DATE	BEG. TIME	END. DATE	END. TIME
001 0023 0034 0055 0066 0077 0099 0111 0113 0144 0157 0118 0190 022	๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚	NORTH-SECTION 1 SOUTH-SECTION 1 EAST-SECTION 1 NORTH-SECTION 2 SOUTH-SECTION 2 EAST-SECTION 3 SOUTH-SECTION 3 SOUTH-SECTION 4 SOUTH-SECTION 4 SOUTH-SECTION 4 NORTH-SECTION 5 SOUTH-SECTION 5 NORTH-SECTION 5 NORTH-SECTION 6 SOUTH-SECTION 6 SOUTH-SECTION 6 NORTH-SECTION 7 SOUTH-SECTION 7 SOUTH-SECTION 7 SOUTH-SECTION 7 NORTH-SECTION 7 SOUTH-SECTION 7 NORTH-SECTION 7 NORTH-SECTION 7 NORTH-SECTION 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STANLEY STANLEY	KANSAS KA	03/15/93 03/15/93 / / / / / / / / / / / / / / / / / /		03/15/93 03/15/93 03/15/93 03/15/93 03/15/93 03/15/93 03/15/93 03/15/93 03/15/93 03/15/93 03/15/93 03/15/93 03/15/93 03/15/93 03/15/93 03/15/93	10:40 10:40 10:40 11:00
023	5	SOUTH-SECTION 8	1	STANLEY	KANSAS	/ / .	;	03/15/93	14:45

						ATDC /	PROULUI	LLADER	AFFROVAL P	LINDING
SAMP. NO. QCC	М	DESCRIPTION	SAMPLE STATUS		STATE	AIRS/ STORET LAY- LOC NO SECT ER	BEG. DATE	BEG. TIME	END. DATE	END. TIME
024 025 025 026 026 027 027 027 028 029 030	S NORTS NORTS SOUTS SOUTS EASTS EASTS NORTS SOUTS	T-SECTION 8 TH-SECTION 9 TH-SECTION 9/DUPLICATE OF 025 TH-SECTION 9 TH-SECTION 9/DUPLICATE OF 026 T-SECTION 9/DUPLICATE OF 027 TH-SECTION 10 TH-SECTION 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STANLEY STANLEY STANLEY STANLEY STANLEY STANLEY STANLEY STANLEY STANLEY STANLEY	KANSAS KANSAS KANSAS KANSAS KANSAS KANSAS KANSAS KANSAS			:	03/15/93 03/15/93 03/15/93 03/15/93 03/15/93 03/15/93 03/15/93 03/15/93	14:45 15:10 15:10 15:10 15:10 15:10 15:30 15:30
030		T-SECTION TO	1	STANLEY	KANSAS KANSAS		// //	:	03/15/93	15:30

```
EXPLANATION OF C...

- AAMPL | DENTIFICATION NUMBER (A 2-DIST) NUMBER WILLIAM IN COMBINATION WITH THE ACTIVITY NUMBER WILLIAM IN COMBINATION WITH THE ACTIVITY NUMBER AND ADDRESS OF THE ACTIVITY NUMBER AND ADDRESS OF THE ACTIVITY NUMBER AND ADDRESS OF THE ACTIVITY OF THE ACTIVITY NUMBER AND ADDRESS OF THE ACTIVITY OF THE ACTIVITY NUMBER AND ADDRESS OF THE ACTIVITY OF THE ACTIVITY NUMBER AND ADDRESS OF THE ACTIVITY OF THE ACTIVITY NUMBER AND ADDRESS OF THE ACTIVITY OF THE ACTIVITY NUMBER AND ADDRESS OF THE ACTIVITY OF THE
```

ACTIVITY: 3-BGXGK

COMPOUND	UNITS 001	002	003	004	005
SG07 SOLIDS. PERCENT	75.0	77.2	72.6	74.8	72.9
SMO8 CHROMIUM, TOTAL, BY ICAP	MG/KG: 1040	568	874	176	: 146
SMO9 COPPER, TOTAL, BY ICAP	:MG/KG:813	586	775	1930	: 340
SM13 NICKEL, TOTAL, BY ICAP	:MG/KG 3310	2970	- 28.36	670	741
SM20 ZINC, TOTAL, BY ICAP	:MG/KG:4270	: 4520	4780	1240	. 11600
ZZO1 SAMPLE NUMBER	NA :001	002	:003	:004	005
ZZO2 ACTIVITY CODE	NA BGXGK	BGXGK	BGXGK	BGXGK	BGXGK

ACTIVITY: 3-BGXGK

UNITS OC	007	800	009	010
71.8	74.6	77.6	73.8	75.6
:MG/KG:187	: 180	267	243	302
MG/KG:379	485	1060	728	776
MG/KG:610	986	1130	<u> </u>	: 786
MG/KG: 1340	35700	4310	5030	9470
NA :006	: 007	008	009	010
NA BGXGK	BGXGK	BGXGK	BGXGK	: BGXGK
	:% :71.8 :MG/KG:187 :MG/KG:379 :MG/KG:610 :MG/KG:1340 :NA :006	:% 71.8 74.6 :MG/KG:187 180 :MG/KG:379 485 :MG/KG:610 986 :MG/KG:1340 \$\$700 :NA 006 007	% 71.8 74.6 77.6 MG/KG: 187 180 267 MG/KG: 379 485 1060 MG/KG: 610 986 1130 MG/KG: 1340 35700 4310 NA 006 007 008	% 71.8 74.6 77.6 73.8 MG/KG: 187 180 267 243 MG/KG: 379 485 1060 728 MG/KG: 610 986 1130 2150 MG/KG: 1340 98700 4310 5030 NA 006 007 008 009

ACTIVITY: 3-BGXGK

COMPOUND	UNITS 011	012	013	014	015
SGO7 SOLIDS, PERCENT	73.3	: 71 . 6	73.0	71.3	72.0
SMO8 CHROMIUM, TOTAL, BY ICAP	MG/KG:319	: 241	: 100	119	101
SMO9 COPPER, TOTAL, BY ICAP	MG/KG:689	: 421	427	565	452
SM13 NICKEL, TOTAL, BY ICAP	:MG/KG:814	: 682	: 391	708	: 466
SM20 ZINC, TOTAL, BY ICAP	: MG/KG: 16800	10400	18640	222000	6240
ZZO1 SAMPLE NUMBER	:NA :011	:012	:013	:014	:015
ZZO2 ACTIVITY CODE	NA BGXGK	BGXGK	BGXGK	BGXGK	: BGXGK

ACTIVITY: 3-BGXGK

COMPOUND	UNITS 016	017	018	019	020
SG07 SOLIDS, PERCENT	71.2	: 73.4	: 70.3	: 71 . 4	71.2
SMO8 CHROMIUM, TOTAL, BY ICAP	MG/KG: 77.5	88.6	129	: 113	: 137
SMO9 COPPER, TOTAL, BY ICAP	MG/KG: 150	135	178	: 124	: 136
SM13 NICKEL, TOTAL, BY ICAP	:MG/KG:413	279	703	22.0	22.9
SM20 ZINC, TOTAL, BY ICAP	MG/KG GGGG	10700	21625	317	362
ZZO1 SAMPLE NUMBER	NA :016	:017	018	:019	020
ZZO2 ACTIVITY CODE	NA BGXGK	BGXGK	BGXGK	BGXGK	: BGXGK

ACTIVITY: 3-BGXGK

COMPOUND	UNITS	021	022	023	024	025
SG07 SOLIDS, PERCENT	·	70.7	: 74 . 7	73.6	73.6	.72.3
SMOS CHROMIUM, TOTAL, BY ICAP	MG/KG	143	162	302	247	263
SMO9 COPPER, TOTAL, BY ICAP	MG/KG	136	147	302	233	587
SM13 NICKEL, TOTAL. BY ICAP	MG/KG	21.5	12.0	:16.6	:16.6	23.8
SM2O ZINC, TOTAL, BY ICAP	MG/KG	312	: 167	230	227	247
ZZO1 SAMPLE NUMBER	: NA	021	022	023	024	025
ZZO2 ACTIVITY CODE	: NA	BGXGK	BGXGK	BGXGK	BGXGK	: BGXGK
· ·		·			,	

ACTIVITY: 3-BGXGK

% 72	2.2	72.2	72.8	69.8	70.3
MG/KG: 29	94	382	422	403	: 434
MG/KG:62	29	713	828	764	926
MG/KG: 24	1.8	25.0	25.4	26.3	32.1
MG/KG: 25	54	250	258	270	292
NA O	25	026	026	027	027
: NA : B(SXGK	BGXGK	BGXGK	BGXGK	BGXGK
	MG/KG 24 MG/KG 25 MG/KG 25 NA 02	::	MG/KG: 629 713 MG/KG: 24.8 25.0 MG/KG: 254 250 NA 025 026	MG/KG:629 713 828 MG/KG:24.8 25.0 25.4 MG/KG:254 250 258 MA 025 026 026	MG/KG:629 713 828 764 MG/KG:24.8 25.0 25.4 26.3 MG/KG:254 250 258 270 NA 025 026 026 027

ACTIVITY: 3-BGXGK

COMPOUND	UNITS 028	029	030		
SGO7 SOLIDS, PERCENT	77.4	76.4	: 76 . 2	:	
SMO8 CHROMIUM, TOTAL, BY ICAP	MG/KG: 13.4	14.3	13.4	:	
SMO9 COPPER, TOTAL, BY ICAP	MG/KG: 19.4	19.5	18.2		:
SM13 NICKEL, TOTAL, BY ICAP	MG/KG: 15.1	16.9	15.7		:
SM20 ZINC, TOTAL, BY ICAP	MG/KG: 197	202	217		
ZZO1 SAMPLE NUMBER	NA :028	029	030		
ZZO2 ACTIVITY CODE	NA BGXGK	BGXGK	BGXGK		:

ACTIVITY BGXGK KUHLMAN DIECASTING C/O

THE PROJECT LEADER SHOULD CIRCLE ONE - STORET, AIRS, OR ARCHIVE.

CIRCLE ONE:

STORET

AIRS

ARCHIVE

DATA APPROVED BY LABO FOR TRANSMISSION TO PROJECT LEADER ON 03/29/93 16:32:01 BY

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

ACTI	/ITY LEADER(Print) NAME OF SURVEY OR ACTIVITY								DATE OF COLLECTION SHEET				
	T. Ca	(ally Kuhlman Diecastino								DAY MONTH YEAR Z of Z			
CONTENTS OF SHIPMENT													
	SAMPLE			E OF CONTA	AINERS		LICA CET	S	AMP			othe	RECEIVING LABORATORY REMARKS/OTHER INFORMATION
	NUMBER	CUBITAINER	<u>807</u> BOTTLE	BOTTLE		TTLE	VOA SET (2 VIALS EA)	water	_	sediment	, J	ome	(condition of samples upon receipt, other sample numbers, etc.)
		NUME	ERS OF CON	TAINERS PER	SAMPLE	NUMBER		₹	Soil	Sec	ä		other sample numbers, etc.)
BG.	XGK 025		1					L	1		_		Cr, Cu, Ni, 2n
	025-0		1						V				, , ,
	026		1						v				7 .
	0.16-D		1	24					V				4
	027		1	·			· Z.		V				и
	017-0		1				7.0	-	1				n
	018		1						1				<i>u</i> , , , , ,
	029		1						1				и
1	1 030		1						1				n 1
		-	•										
						·							:1
		,											,
													·
		,			1							-	
				$\overline{}$, <u> </u>						1
			-										
						$\overline{}$					7		
									П		\dashv		
											┪		
										7	コ		
					 					1	Ť	_	
									П		寸		
					+				H	\dashv	\dashv		
			<u></u>		 				\vdash		7		
DESC	I RIPTION OF SH	IIPMENT			_L	М	ODE OF SHII	PMF	NT				
		 				+							
	PIECE(S) CC	INSISTING OF		_ BOX(ES)		COMMERCIAL CARRIER:							
ICE CHEST(S); OTHER					SAMPLER CONVEYED (SHIPPING DOCUMENT NUMBER)								
PERSONNEL CUSTODY RECORD													
RELIN	QUISHED BY	(SAMPLER)	DAT	TIM	1E	RECEI	VED BY						REASON FOR CHANGE OF CUSTODY
JSEALED UNSEALED X 7/6/93 1348						Transport to lab							
SEALED UNSEALED 793 SEALED UNSEALED RELINQUISHED BY REASON FOR CHANGE OF CUSTODY													
												•	
	ALED	UNSEALE			<u>.</u>	SEA			UN	SEA	LE	<u> </u>	REASON FOR CHANGE OF CUSTODY
IRELIN	QUISHED BY		DAT	E TIN	//E	RECE	IVED BY						REASON FOR CHANGE OF COSTODY
L L SE	ALED	UNSEALI	ED		ŀ	SEA	LED		UN	SEA	۱LE	٦ٍڡ	-

CHAIN OF CUSTODY RECORD
ENVIRONMENTAL PROTECTION AGENCY REGION VII

ACTIVITY LEADER(Print) NAME OF SURVEY OR ACTIVITY									DATE OF COLLECTION SHEET 15				
CONTENTS OF SHIPMENT									DAY MONTH YEAR / Of 1				
	VILIVI		E OF CONTAINE	ERS		SA	MPL	ED M	IEDIA_	* RECEIVING LABORATORY			
SAMPLE NUMBER	CUBITAINER	BOTTLE BERS OF CONT	BOTTLE TAINERS PER SA	BOTTLE AMPLE NUM	VOA SET (2 VIALS EA) BER	water	SOI	sediment	other	REMARKS/OTHER INFORMATION (condition of samples upon receipt, other sample numbers, etc.)			
RGXGKOOL		1					4			Cr Cu N; 7n			
202		1					u			Cr, Cu, Ni, 7 h			
203		1					v			II.			
204		1					9			1/			
1 005		1					4		_]	1,			
206							1	_		u .			
207		1					1	\perp		<i>"</i>			
008							4	\perp		.,			
29		1_					4	4		4			
20		1					4	4		9			
1 211							1	\downarrow	_	u			
2/1						$\downarrow \downarrow$	4	_	_	11			
0/3		1				Ш	4	\perp		4			
01							4	_	<u> </u>	и			
215							4	4	_	ν			
016		1					4	\downarrow	<u> </u>	и			
717		. ,					4	\downarrow		4			
018							4	4	↓_	V			
019							4	_	-↓	11			
020		1.					4	\perp	\downarrow	И			
							4	\bot	↓_	U			
022							4	_	<u> </u>	ч			
013						\sqcup	4	_	↓	4			
024		1		-			4			u			
DESCRIPTION OF SH					MODE OF SHII								
PIECE(S) CO	PIECE(S) CONSISTING OF BOX(ES)					COMMERCIAL CARRIER:							
ICE CHEST(S); OTHER				SAMPLE		NVE	YED		(SHIPPING DOCUMENT NUMBER)			
PERSONNEL CUSTO	DY RECORD									/			
RELINQUISHED BY	(SAMPLER)	DATI			CEIVED BY					REASON FOR CHANGE OF CUSTODY			
	UNSEALE		16/93 17/	SEALED TUNSEALED				Timport to lab					
RELINQUISHED BY		ĎATE		RE	CEIVED BY					REASON FOR CHANGE OF CUSTODY			
SEALED	UNSEALE				SEALED	ι	JNS	EAL	ED [
RELINQUISHED BY		DAT	E TIME	RE	CEIVED BY	_				REASON FOR CHANGE OF CUSTODY			
SEALED	UNSEALE	= 0		<u> </u>	SEALED	1	UNS	SEA	LED				